Penerapan Konsep Integral Dalam Kehidupan Sehari-hari
Penerapan Konsep Integral Dalam Kehidupan Sehari-hari
Sejauh
ini sobat allmipa pasti sudah penasaran dan menjadikan misteri tentang
apa sih sebenarnya tujuan kita dalam mempelajari matematika khususnya
materi integral? Apakah bisa materi integral diterapkan dalam kehidupan
sehari-hari? Pasti itu pertanyaan yang sering muncul dalam diri kita
semua selama ini. Sobat allmipa sebagian besar merasa mempelajari
integral merumitkan dan membuang-buang waktu. Akan tetapi,
rasa penasaran kalian akan terobati, ini sebenarnya
fungsi dan manfaat mempelajari materi matematika integral dalam
kehidupan nyata, simak baik-baik:
Wahhh, ternyata banyak sekali ya sobat allmipa manfaat dari materi integral yang belum kita ketahui. Walaupun sebenarnya kita tahu bahwa itu ada disekitar kita. Dengan begitu kita menjadi lebih tahu manfaat sebenarnya dari materi integral tersebut dalam kehidupan sehari-hari. Namun jangan sampai pengetahuan kalian berhenti sampai disitu saja, terus gali dan cari ilmu sampai ke negeri China.
Pengertian Integral
Integral merupakan bentuk operasi matematika yang menjadi kebalikan (invers) dari operasi turunan dan limit dari jumlah atau suatu luas daerah tertentu. Berdasarkan pengertian tersebut ada dua hal yang dilakukan dalam integral sehingga dikategorikan menjadi 2 jenis integral. Pertama, integral sebagai invers/ kebalikan dari turunan disebut sebagai Integral Tak Tentu. Kedua, integral sebagai limit dari jumlah atau suatu luas daerah tertentu disebut integral tentu.
Integral Tak Tentu
Integral tak tentu seperti sebelumnya dijelaskan merupakan invers/kebalikan dari turunan. Turunan dari suatu fungsi, jika diintegralkan akan menghasilkan fungsi itu sendiri. Perhatikanlah contoh turunan-turunan dalam fungsi aljabar berikut ini:
- Turunan dari fungsi aljabar y = x3 adalah yI = 3x2
- Turunan dari fungsi aljabar y = x3 + 8 adalah yI = 3x2
- Turunan dari fungsi aljabar y = x3 + 17 adalah yI = 3x2
- Turunan dari fungsi aljabar y = x3 – 6 adalah yI = 3x2
Seperti yang sudah dipelajari dalam materi turunan, variabel dalam suatu fungsi mengalami penurunan pangkat. Berdasarkan contoh tersebut, diketahui bahwa ada banyak fungsi yang memiliki hasil turunan yang sama yaitu yI = 3x2. Fungsi dari variabel x3 ataupun fungsi dari variabel x3 yang ditambah atau dikurang suatu bilangan (misal contoh: +8, +17, atau -6) memiliki turunan yang sama. Jika turunan tersebut dintegralkan, seharusnya adalah menjadi fungsi-fungsi awal sebelum diturunkan. Namun, dalam kasus tidak diketahui fungsi awal dari suatu turunan, maka hasil integral dari turunan tersebut dapat ditulis:
f(x) = y = x3 + C
Dengan nilai C bisa berapapun. Notasi C ini disebut sebagai konstanta integral. Integral tak tentu dari suatu fungsi dinotasikan sebagai:
Karena integral dan turunan berkaitan, maka rumus integral dapat diperoleh dari rumusan penurunan. Jika turunan:
Maka rumus integral aljabar diperoleh:
dengan syarat .
Sebagai contoh lihatlah integral aljabar fungsi-fungsi berikut:
Integral Trigonometri
Integral juga bisa dioperasikan pada fungsi trigonometri. Pengoperasian integral trigonometri juga dilakukan dengan konsep yang sama pada pada integral aljabar yaitu kebalikan dari penurunan. Sehingga dapat simpulkan bahwa:
No. | Fungsi f(x) = y | Turunan | Integral |
1 | y = sin x | cos x | = sin x |
2 | y = cos x | – sin x | = – cos x |
3 | y = tan x | sec2 x | = tan x |
4 | y = cot x | – csc2 x | = – cot x |
5 | y = sec x | tan x . sec x | = sec x |
6 | y = csc x | -.cot x . csc x | = – csc x |
Selain rumus dasar diatas, ada rumus lain yang bisa digunakan pada pengoperasian integral trigonometri yaitu:
Fungsi f(x) = y | Turunan | Integral |
cos (ax + b) | = sin (ax + b) + C | |
sin (ax + b) | = cos (ax + b) + C | |
y = tan (ax + b) | sec2 (ax + b) | = tan (ax + b) + C |
y = cot (ax + b) | csc2 (ax + b) | = cot (ax + b) |
y = sec (ax + b) | tan (ax + b) . sec (ax + b) | (ax+b) . sec(ax + b) dx= sec (ax + b) + C |
y = csc (ax + b) | cot (ax + b) . csc (ax + b) |
cot (ax + b) . csc (ax + b) dx = csc (ax + b) |
Sifat-sifat dari integral yaitu:
- (dengan k adalah konstanta)
Contoh soal integral tak tentu:
Diketahui
Carilah integralnya ?
Jawab :
Contoh Integral Trigonometri:
Diketahui turunan
y = f(x) ialah = f ‘(x) = 2x + 3
Andai kurva
y = f(x) melalui titik (1, 6)
tentukan persamaan kurva tersebut.
Jawab :
f ‘(x) = 2x + 3.
y = f(x) = ʃ (2x + 3) dx = x2 + 3x + c.
Kurva melalui titik (1, 6), berarti f(1) = 6 hinggabisa di tentukan nilai c, yaitu
1 + 3 + c = 6 ↔ c = 2.
Maka, persamaan kurva yang dimaksud adalah
y = f(x) = x2 + 3x + 2
referensi: http://www.allmipa.com/2016/10/penerapan-konsep-integral-dalam.html
Komentar
Posting Komentar